Hi so I have a calculus question involving curve sketching and such heres the question A twice

Question

A twice

differentiable function, f(x), has a domain of [-6, 6] (4)

a) Identify the value(s) of x over [-6, 6] for which f has a local minimum.

b) Identify the interval(s) over [-6, 6] for which the function f is concave up.

c) Identify the value(s) of x over [-6, 6] for which f has a point of inflection.

d) Given f (-6) = 5, sketch a possible graph of f.

Im having some confusion. what exactly does it mean if f”(x) is 0 over an interval. i know if the second derivative is 0 it may be an infelction point. Idk i think im just confusing myself with the way things are written and im having trouble with the sketch. i got a parabola that passes through -2 but not sure if its correct

Math